Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
International Journal of Ethics Education ; : 1-29, 2022.
Article in English | EuropePMC | ID: covidwho-2034231

ABSTRACT

Engineering ethics can be divided into three spheres, namely the technical, the professional, and the social. Ideally, engineering students should engage with all three spheres of ethics, but the literature suggests that this might not be the case. How do engineering students engage with the three spheres of engineering ethics during a global pandemic? The COVID-19 pandemic represents a dramatic and ongoing real-world challenge affecting many students personally. This research explores the extent to which engineering students engage with each sphere of engineering ethics by examining how engineering students understand their roles in addressing the pandemic and its implications. We conducted a survey with undergraduate engineering students (n = 410) at a university in the Midwest. Qualitative analysis suggests that there was low engagement with both social ethics and professional ethics among respondents, while there was higher engagement with technical ethics. Quantitative analysis suggests that non-conservative engineering students from less wealthy families in our study show higher engagement with technical ethics as compared to conservative engineering students from less wealthy families. Non-conservative engineering students from wealthy families, however, show similar engagement with technical ethics as compared to conservative engineering students from wealthy families. In addition, engineering students from both wealthy and less wealthy families show higher engagement with technical ethics if they reside in urban areas as compared to engineering students from both wealthy and less wealthy families in non-urban areas. In addition, the difference in terms of engagement with technical ethics between non-urban engineering students from less wealthy families and urban engineering students from less wealthy families is larger than the difference in terms of engagement with technical ethics between non-urban engineering students from wealthy families and urban engineering students from wealthy families. Further investigation will be needed to explain these findings. However, qualitative results confirm that, despite the potential for the pandemic to encourage engagement with all three spheres of ethics, there continues to be low engagement with ethics beyond the technical level. Supplementary Information The online version contains supplementary material available at 10.1007/s40889-022-00156-4.

2.
J Clean Prod ; 367: 132962, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-1914566

ABSTRACT

Social distancing policies (SDPs) implemented worldwide in response to COVID-19 pandemic have led to spatiotemporal variations in water demand and wastewater flow, creating potential operational and service-related quality issues in water-sector infrastructure. Understanding water-demand variations is especially challenging in contexts with limited availability of smart meter infrastructure, hindering utilities' ability to respond in real time to identified system vulnerabilities. Leveraging water and wastewater infrastructures' interdependencies, this study proposes the use of high-granular wastewater-flow data as a proxy to understand both water and wastewater systems' behaviors during active SDPs. Enabled by a random-effects model of wastewater flow in an urban metropolitan city in Texas, we explore the impacts of various SDPs (e.g., stay home-work safe, reopening phases) using daily flow data gathered between March 19, 2019, and December 31, 2020. Results indicate an increase in residential flow that offset a decrease in nonresidential flow, demonstrating a spatial redistribution of wastewater flow during the stay home-work safe period. Our results show that the three reopening phases had statistically significant relationships to wastewater flow. While this yielded only marginal net effects on overall wastewater flow, it serves as an indicator of behavioral changes in water demand at sub-system spatial scales given demand-flow interdependencies. Our assessment should enable utilities without smart meters in their water system to proactively target their operational response during pandemics, such as (1) monitoring wastewater-flow velocity to alleviate potential blockages in sewer pipes in case of decreased flows, and (2) closely investigating any consequential water-quality problems due to decreased demands.

3.
Journal of Water Resources Planning and Management ; 148(6), 2022.
Article in English | ProQuest Central | ID: covidwho-1768977

ABSTRACT

The COVID-19 pandemic affected the operation of water utilities across the world. In the context of utilities, new protocols were needed to ensure that employees can work safely, and that water service is not interrupted. This study reports on how the operations of 27 water utilities worldwide were affected by the COVID-19 pandemic. Interviews were conducted between June and October 2020;respondents represent utilities that varied in population size, location, and customer composition (e.g., residential, industrial, commercial, institutional, and university customers). Survey questions focused on the effects of the pandemic on water system operation, demand, revenues, system vulnerabilities, and the use and development of emergency response plans (ERPs). Responses indicate that significant changes in water system operations were implemented to ensure that water utility employees could continue working while maintaining safe social distancing or alternatively working from home. A total of 23 of 27 utilities reported small changes in demand volumes and patterns, which can lead to some changes in water infrastructure operations and water quality. Utilities experienced a range of impacts on finances, where most utilities discussed small decreases in revenues, with a few reporting more drastic impacts. The pandemic revealed new system vulnerabilities, including supply chain management, capacity of staff to perform certain functions remotely, and finances. Some utilities applied existing guidance developed through ERPs with slight modifications, other utilities developed new ERPs to specifically address unique conditions induced by the pandemic, and a few utilities did not use or reference their existing ERPs to change operations. Many utilities suggested that lessons learned would be used in future ERPs, such as personnel training on pandemic risk management or annual mock exercises for preparing employees to better respond to emergencies.

4.
Journal of Water Resources Planning and Management ; 148(6), 2022.
Article in English | ProQuest Central | ID: covidwho-1758457

ABSTRACT

Hydraulic models can provide efficient and cost-effective ways for water utilities to evaluate changes in operating conditions (e.g., population dynamics, disasters), thereby increasing system resiliency during crises. Unfortunately, model development remains out of reach for many utilities because of high software costs, data needs, or personnel requirements. This study seeks to classify hydraulic modeling data needs, identify success factors and challenges associated with model development, and determine whether modeling a subzone of a larger water distribution network can provide useful insights during a crisis, specifically the COVID-19 pandemic. At the pandemic onset, we began developing a hydraulic model of the water distribution system of the University of Texas at Austin campus—a subsystem of the water distribution network of Austin, Texas—to understand how spatiotemporal changes in water demands impacted system performance. We found that the completed model can offer useful insight into the impacts of demand changes within the modeled subsystem (e.g., potential locations of water stagnation). However, the data collection and processing challenges encountered (e.g., siloed collection efforts, lack of standardization, lengthy processing) reflect barriers to model development and use. The amount of time required to gather and process the necessary data shows that model development cannot occur during a time-sensitive crisis, likely rendering any insight too late for use. Here, we make recommendations to address data-related challenges and support utilities in incorporating hydraulic modeling into emergency planning.

5.
ACS ES T Water ; 1(11): 2327-2338, 2021 Nov 12.
Article in English | MEDLINE | ID: covidwho-1517591

ABSTRACT

When engineers design and manage a building's water and electricity utilities, they must make assumptions about resource use. These assumptions are often challenged when unexpected changes in demand occur, such as the spatial and temporal changes observed during the coronavirus (COVID-19) pandemic. Social distancing policies (SDPs) enacted led many universities to close their campuses and implement remote learning, impacting utility consumption patterns. Yet, little is known about how consumption changed at the building level. Here, we aim to understand how water and electricity consumption changed during the pandemic by identifying characteristic weekly demand profiles and understanding how these changes were related to regulatory and social systems. We performed k-means clustering on utility demand data measured before and as the pandemic evolved from five buildings of different types at the University of Texas at Austin. As expected, after SDPs were enacted both water and electricity use shifted, with most buildings seeing a sharp initial decline that remained low until the university partially reopened. In contrast to electricity use, we found that water use was tightly coupled with SDPs. Our study provides actionable information for managers to mitigate negative impacts (e.g., water stagnation) and capitalize on opportunities to minimize resource use.

6.
J Environ Manage ; 302(Pt A): 113949, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1466606

ABSTRACT

Social distancing policies (SDPs) implemented in response to the COVID-19 pandemic have led to temporal and spatial shifts in water demand across cities. Water utilities need to understand these demand shifts to respond to potential operational and water-quality issues. Aided by a fixed-effects model of citywide water demand in Austin, Texas, we explore the impacts of various SDPs (e.g., time after the stay home-work safe order, reopening phases) using daily demand data gathered between 2013 and 2020. Our approach uses socio-technical determinants (e.g., climate, water conservation policy) with SDPs to model water demand, while accounting for spatial and temporal effects (e.g., geographic variations, weekday patterns). Results indicate shifts in behavior of residential and nonresidential demands that offset the change at the system scale, demonstrating a spatial redistribution of water demand after the stay home-work safe order. Our results show that some phases of Texas's reopening phases had statistically significant relationships to water demand. While this yielded only marginal net effects on overall demand, it underscores behavioral changes in demand at sub-system spatial scales. Our discussions shed light on SDPs' impacts on water demand. Equipped with our empirical findings, utilities can respond to potential vulnerabilities in their systems, such as water-quality problems that may be related to changes in water pressure in response to demand variations.


Subject(s)
COVID-19 , Water , Humans , Pandemics , Physical Distancing , Policy , Population Dynamics , SARS-CoV-2 , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL